Toric Poisson Structures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Poisson Structures

Let TC be a complex algebraic torus and let X(Σ) be a complete nonsingular toric variety for TC. In this paper, a real TCinvariant Poisson structure ΠΣ is constructed on the complex manifold X(Σ), the symplectic leaves of which are the TC-orbits in X(Σ). It is shown that each leaf admits an effective Hamiltonian action by a subtorus of the compact torus T ⊂ TC. However, the global action of TC ...

متن کامل

Twisted Toric Structures

This paper introduces the notion of twisted toric manifolds which is a generalization of one of symplectic toric manifolds, and proves the weak Delzant type classification theorem for them. The computation methods for their fundamental groups, cohomology groups in general cases, and signatures in four-dimensional cases are also given.

متن کامل

Quivers and Poisson Structures

We produce natural quadratic Poisson structures on moduli spaces of representations of quivers. In particular, we study a natural Poisson structure for the generalised Kronecker quiver with 3 arrows.

متن کامل

Poisson Structures on Orbifolds

In this paper, we compute the Gerstenhaber bracket on the Hochschild cohomology of C∞(M)⋊Γ. Using this computation, we classify all the noncommutative Poisson structures on C∞(M) ⋊ Γ when M is a symplectic manifold. We provide examples of deformation quantizations of these noncommutative Poisson structures.

متن کامل

Quasi-Poisson structures as Dirac structures

We show that quasi-Poisson structures can be identified with Dirac structures in suitable Courant algebroids. This provides a geometric way to construct Lie algebroids associated with quasi-Poisson spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moscow Mathematical Journal

سال: 2011

ISSN: 1609-3321,1609-4514

DOI: 10.17323/1609-4514-2011-11-2-205-299